Given number:
$$\left(3 - \frac{\sin{\left(n \right)}}{n}\right) - \log{\left(n \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = - \log{\left(n \right)} + 3 - \frac{\sin{\left(n \right)}}{n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\log{\left(n \right)} - 3 + \frac{\sin{\left(n \right)}}{n}}{\log{\left(n + 1 \right)} - 3 + \frac{\sin{\left(n + 1 \right)}}{n + 1}}}\right|$$
Let's take the limitwe find
$$1 = \lim_{n \to \infty} \left|{\frac{\log{\left(n \right)} - 3 + \frac{\sin{\left(n \right)}}{n}}{\log{\left(n + 1 \right)} - 3 + \frac{\sin{\left(n + 1 \right)}}{n + 1}}}\right|$$
False