Mister Exam

Other calculators


exp(-0.01*n)

Sum of series exp(-0.01*n)



=

The solution

You have entered [src]
  oo      
____      
\   `     
 \     -n 
  \    ---
  /    100
 /    e   
/___,     
n = 1     
n=1en100\sum_{n=1}^{\infty} e^{- \frac{n}{100}}
Sum(exp(-n/100), (n, 1, oo))
The radius of convergence of the power series
Given number:
en100e^{- \frac{n}{100}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1a_{n} = 1
and
x0=ex_{0} = - e
,
d=1100d = - \frac{1}{100}
,
c=0c = 0
then
1R100=~(e+limn1)\frac{1}{\sqrt[100]{R}} = \tilde{\infty} \left(- e + \lim_{n \to \infty} 1\right)
Let's take the limit
we find
False

R=0R = 0
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5010
The answer [src]
   -1/100  
  e        
-----------
     -1/100
1 - e      
1(1e1100)e1100\frac{1}{\left(1 - e^{- \frac{1}{100}}\right) e^{\frac{1}{100}}}
exp(-1/100)/(1 - exp(-1/100))
Numerical answer [src]
99.5008333319444477513144841479
99.5008333319444477513144841479
The graph
Sum of series exp(-0.01*n)

    Examples of finding the sum of a series