Mister Exam

Other calculators


3/((4n-1)*(4n+3))

Sum of series 3/((4n-1)*(4n+3))



=

The solution

You have entered [src]
  oo                     
 ___                     
 \  `                    
  \            3         
   )  -------------------
  /   (4*n - 1)*(4*n + 3)
 /__,                    
n = 1                    
n=13(4n1)(4n+3)\sum_{n=1}^{\infty} \frac{3}{\left(4 n - 1\right) \left(4 n + 3\right)}
Sum(3/(((4*n - 1)*(4*n + 3))), (n, 1, oo))
The radius of convergence of the power series
Given number:
3(4n1)(4n+3)\frac{3}{\left(4 n - 1\right) \left(4 n + 3\right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=3(4n1)(4n+3)a_{n} = \frac{3}{\left(4 n - 1\right) \left(4 n + 3\right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((4n+7)14n1)1 = \lim_{n \to \infty}\left(\left(4 n + 7\right) \left|{\frac{1}{4 n - 1}}\right|\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.100.30
The answer [src]
Gamma(11/4) 
------------
7*Gamma(7/4)
Γ(114)7Γ(74)\frac{\Gamma\left(\frac{11}{4}\right)}{7 \Gamma\left(\frac{7}{4}\right)}
gamma(11/4)/(7*gamma(7/4))
Numerical answer [src]
0.250000000000000000000000000000
0.250000000000000000000000000000
The graph
Sum of series 3/((4n-1)*(4n+3))

    Examples of finding the sum of a series