Mister Exam

Other calculators


sin3^n/3^n

Sum of series sin3^n/3^n



=

The solution

You have entered [src]
  oo         
____         
\   `        
 \       n   
  \   sin (3)
   )  -------
  /       n  
 /       3   
/___,        
n = 1        
$$\sum_{n=1}^{\infty} \frac{\sin^{n}{\left(3 \right)}}{3^{n}}$$
Sum(sin(3)^n/3^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\sin^{n}{\left(3 \right)}}{3^{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \sin^{n}{\left(3 \right)}$$
and
$$x_{0} = -3$$
,
$$d = -1$$
,
$$c = 0$$
then
$$\frac{1}{R} = \tilde{\infty} \left(-3 + \lim_{n \to \infty}\left(\sin^{n}{\left(3 \right)} \sin^{- n - 1}{\left(3 \right)}\right)\right)$$
Let's take the limit
we find
False

False

$$R = 0$$
The rate of convergence of the power series
The answer [src]
    sin(3)    
--------------
  /    sin(3)\
3*|1 - ------|
  \      3   /
$$\frac{\sin{\left(3 \right)}}{3 \left(1 - \frac{\sin{\left(3 \right)}}{3}\right)}$$
sin(3)/(3*(1 - sin(3)/3))
Numerical answer [src]
0.0493619908697526004342609771427
0.0493619908697526004342609771427
The graph
Sum of series sin3^n/3^n

    Examples of finding the sum of a series