Mister Exam

Other calculators


tg1/(n*sqrt(n))

Sum of series tg1/(n*sqrt(n))



=

The solution

You have entered [src]
  oo         
____         
\   `        
 \     tan(1)
  \   -------
  /       ___
 /    n*\/ n 
/___,        
n = 1        
$$\sum_{n=1}^{\infty} \frac{\tan{\left(1 \right)}}{\sqrt{n} n}$$
Sum(tan(1)/((n*sqrt(n))), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\tan{\left(1 \right)}}{\sqrt{n} n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\tan{\left(1 \right)}}{n^{\frac{3}{2}}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{\frac{3}{2}}}{n^{\frac{3}{2}}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
  oo        
____        
\   `       
 \    tan(1)
  \   ------
  /     3/2 
 /     n    
/___,       
n = 1       
$$\sum_{n=1}^{\infty} \frac{\tan{\left(1 \right)}}{n^{\frac{3}{2}}}$$
Sum(tan(1)/n^(3/2), (n, 1, oo))
Numerical answer [src]
4.06853354774082323541858552873
4.06853354774082323541858552873
The graph
Sum of series tg1/(n*sqrt(n))

    Examples of finding the sum of a series