Mister Exam

Other calculators


sqrt(x)/(100^2+x)

Sum of series sqrt(x)/(100^2+x)



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \        ___  
  \     \/ x   
  /   ---------
 /    10000 + x
/___,          
x = 1          
$$\sum_{x=1}^{\infty} \frac{\sqrt{x}}{x + 10000}$$
Sum(sqrt(x)/(10000 + x), (x, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\sqrt{x}}{x + 10000}$$
It is a series of species
$$a_{x} \left(c x - x_{0}\right)^{d x}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}$$
In this case
$$a_{x} = \frac{\sqrt{x}}{x + 10000}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{x \to \infty}\left(\frac{\sqrt{x} \left(x + 10001\right)}{\sqrt{x + 1} \left(x + 10000\right)}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer
The series diverges
The graph
Sum of series sqrt(x)/(100^2+x)

    Examples of finding the sum of a series