Mister Exam

Other calculators

Sum of series (3x)^2n/ln(2n-1)



=

The solution

You have entered [src]
  oo              
____              
\   `             
 \           2    
  \     (3*x) *n  
  /   ------------
 /    log(2*n - 1)
/___,             
n = 2             
$$\sum_{n=2}^{\infty} \frac{n \left(3 x\right)^{2}}{\log{\left(2 n - 1 \right)}}$$
Sum(((3*x)^2*n)/log(2*n - 1), (n, 2, oo))
The radius of convergence of the power series
Given number:
$$\frac{n \left(3 x\right)^{2}}{\log{\left(2 n - 1 \right)}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{9 n x^{2}}{\log{\left(2 n - 1 \right)}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{n \log{\left(2 n + 1 \right)} \left|{\frac{1}{\log{\left(2 n - 1 \right)}}}\right|}{n + 1}\right)$$
Let's take the limit
we find
True

False
The answer [src]
  oo               
____               
\   `              
 \             2   
  \       9*n*x    
  /   -------------
 /    log(-1 + 2*n)
/___,              
n = 2              
$$\sum_{n=2}^{\infty} \frac{9 n x^{2}}{\log{\left(2 n - 1 \right)}}$$
Sum(9*n*x^2/log(-1 + 2*n), (n, 2, oo))

    Examples of finding the sum of a series