Mister Exam

Other calculators


sqrt(n+1)/2^n

Sum of series sqrt(n+1)/2^n



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \      _______
  \   \/ n + 1 
   )  ---------
  /        n   
 /        2    
/___,          
n = 1          
n=1n+12n\sum_{n=1}^{\infty} \frac{\sqrt{n + 1}}{2^{n}}
Sum(sqrt(n + 1)/2^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
n+12n\frac{\sqrt{n + 1}}{2^{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=n+1a_{n} = \sqrt{n + 1}
and
x0=2x_{0} = -2
,
d=1d = -1
,
c=0c = 0
then
1R=~(2+limn(n+1n+2))\frac{1}{R} = \tilde{\infty} \left(-2 + \lim_{n \to \infty}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right)\right)
Let's take the limit
we find
False

R=0R = 0
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.502
The answer [src]
  oo               
 ___               
 \  `              
  \    -n   _______
  /   2  *\/ 1 + n 
 /__,              
n = 1              
n=12nn+1\sum_{n=1}^{\infty} 2^{- n} \sqrt{n + 1}
Sum(2^(-n)*sqrt(1 + n), (n, 1, oo))
Numerical answer [src]
1.69450750547150138439924692807
1.69450750547150138439924692807
The graph
Sum of series sqrt(n+1)/2^n

    Examples of finding the sum of a series