We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{n \to \infty} \sqrt{n + 1} = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty} \sqrt{n + 2} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \sqrt{n + 1}}{\frac{d}{d n} \sqrt{n + 2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\sqrt{n + 2}}{\sqrt{n + 1}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\sqrt{n + 2}}{\sqrt{n + 1}}\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)