Mister Exam

Other calculators:


sqrt(1+n)/sqrt(2+n)

Limit of the function sqrt(1+n)/sqrt(2+n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  _______\
     |\/ 1 + n |
 lim |---------|
n->oo|  _______|
     \\/ 2 + n /
limn(n+1n+2)\lim_{n \to \infty}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right)
Limit(sqrt(1 + n)/sqrt(2 + n), n, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limnn+1=\lim_{n \to \infty} \sqrt{n + 1} = \infty
and limit for the denominator is
limnn+2=\lim_{n \to \infty} \sqrt{n + 2} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limn(n+1n+2)\lim_{n \to \infty}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right)
=
limn(ddnn+1ddnn+2)\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \sqrt{n + 1}}{\frac{d}{d n} \sqrt{n + 2}}\right)
=
limn(n+2n+1)\lim_{n \to \infty}\left(\frac{\sqrt{n + 2}}{\sqrt{n + 1}}\right)
=
limn(n+2n+1)\lim_{n \to \infty}\left(\frac{\sqrt{n + 2}}{\sqrt{n + 1}}\right)
=
11
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-101005
Rapid solution [src]
1
11
Other limits n→0, -oo, +oo, 1
limn(n+1n+2)=1\lim_{n \to \infty}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right) = 1
limn0(n+1n+2)=22\lim_{n \to 0^-}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right) = \frac{\sqrt{2}}{2}
More at n→0 from the left
limn0+(n+1n+2)=22\lim_{n \to 0^+}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right) = \frac{\sqrt{2}}{2}
More at n→0 from the right
limn1(n+1n+2)=63\lim_{n \to 1^-}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right) = \frac{\sqrt{6}}{3}
More at n→1 from the left
limn1+(n+1n+2)=63\lim_{n \to 1^+}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right) = \frac{\sqrt{6}}{3}
More at n→1 from the right
limn(n+1n+2)=1\lim_{n \to -\infty}\left(\frac{\sqrt{n + 1}}{\sqrt{n + 2}}\right) = 1
More at n→-oo
The graph
Limit of the function sqrt(1+n)/sqrt(2+n)