Mister Exam

Other calculators


sqrt(n)*sin(pi/n^2)
  • How to use it?

  • Sum of series:
  • sqrt(n)*sin(pi/n^2) sqrt(n)*sin(pi/n^2)
  • -6n(6n+6)+(6n-6)(6+6n) -6n(6n+6)+(6n-6)(6+6n)
  • (n*x^n)/(n+1)
  • 1/(n(n+1)(n+2)) 1/(n(n+1)(n+2))
  • Identical expressions

  • sqrt(n)*sin(pi/n^ two)
  • square root of (n) multiply by sinus of ( Pi divide by n squared )
  • square root of (n) multiply by sinus of ( Pi divide by n to the power of two)
  • √(n)*sin(pi/n^2)
  • sqrt(n)*sin(pi/n2)
  • sqrtn*sinpi/n2
  • sqrt(n)*sin(pi/n²)
  • sqrt(n)*sin(pi/n to the power of 2)
  • sqrt(n)sin(pi/n^2)
  • sqrt(n)sin(pi/n2)
  • sqrtnsinpi/n2
  • sqrtnsinpi/n^2
  • sqrt(n)*sin(pi divide by n^2)

Sum of series sqrt(n)*sin(pi/n^2)



=

The solution

You have entered [src]
  oo               
____               
\   `              
 \      ___    /pi\
  \   \/ n *sin|--|
  /            | 2|
 /             \n /
/___,              
n = 1              
n=1nsin(πn2)\sum_{n=1}^{\infty} \sqrt{n} \sin{\left(\frac{\pi}{n^{2}} \right)}
Sum(sqrt(n)*sin(pi/n^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
nsin(πn2)\sqrt{n} \sin{\left(\frac{\pi}{n^{2}} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=nsin(πn2)a_{n} = \sqrt{n} \sin{\left(\frac{\pi}{n^{2}} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(nsin(πn2)sin(π(n+1)2)n+1)1 = \lim_{n \to \infty}\left(\frac{\sqrt{n} \left|{\frac{\sin{\left(\frac{\pi}{n^{2}} \right)}}{\sin{\left(\frac{\pi}{\left(n + 1\right)^{2}} \right)}}}\right|}{\sqrt{n + 1}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.05.0
Numerical answer [src]
4.93872735086760375010342509187
4.93872735086760375010342509187
The graph
Sum of series sqrt(n)*sin(pi/n^2)

    Examples of finding the sum of a series