oo ____ \ ` \ n \ n*x / ----- / n + 1 /___, n = 0
Sum((n*x^n)/(n + 1), (n, 0, oo))
/ / 2 2*log(1 - x)\ |x*|- ------ + ------------| | | 2 2 | | \ x - x x / |--------------------------- for |x| < 1 | 2 | | oo < ____ | \ ` | \ n | \ n*x | / ----- otherwise | / 1 + n | /___, | n = 0 \
Piecewise((x*(-2/(x^2 - x) + 2*log(1 - x)/x^2)/2, |x| < 1), (Sum(n*x^n/(1 + n), (n, 0, oo)), True))
x^n/n
(x-1)^n
1/2^(n!)
n^2/n!
x^n/n!
k!/(n!*(n+k)!)
csc(n)^2/n^3
1/n^2
1/n^4
1/n^6
1/n
(-1)^n
(-1)^(n + 1)/n
(n + 2)*(-1)^(n - 1)
(3*n - 1)/(-5)^n
(-1)^(n - 1)*n/(6*n - 5)
(-1)^(n + 1)/n*x^n
(3*n - 1)/(-5)^n