Mister Exam

Other calculators

Sum of series (n*x^n)/(n+1)



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \        n
  \    n*x 
  /   -----
 /    n + 1
/___,      
n = 0      
n=0nxnn+1\sum_{n=0}^{\infty} \frac{n x^{n}}{n + 1}
Sum((n*x^n)/(n + 1), (n, 0, oo))
The radius of convergence of the power series
Given number:
nxnn+1\frac{n x^{n}}{n + 1}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=nn+1a_{n} = \frac{n}{n + 1}
and
x0=0x_{0} = 0
,
d=1d = 1
,
c=1c = 1
then
R=limn(n(n+2)(n+1)2)R = \lim_{n \to \infty}\left(\frac{n \left(n + 2\right)}{\left(n + 1\right)^{2}}\right)
Let's take the limit
we find
R=1R = 1
The answer [src]
/  /    2      2*log(1 - x)\             
|x*|- ------ + ------------|             
|  |   2             2     |             
|  \  x  - x        x      /             
|---------------------------  for |x| < 1
|             2                          
|                                        
|          oo                            
<        ____                            
|        \   `                           
|         \        n                     
|          \    n*x                      
|          /   -----           otherwise 
|         /    1 + n                     
|        /___,                           
|        n = 0                           
\                                        
{x(2x2x+2log(1x)x2)2forx<1n=0nxnn+1otherwise\begin{cases} \frac{x \left(- \frac{2}{x^{2} - x} + \frac{2 \log{\left(1 - x \right)}}{x^{2}}\right)}{2} & \text{for}\: \left|{x}\right| < 1 \\\sum_{n=0}^{\infty} \frac{n x^{n}}{n + 1} & \text{otherwise} \end{cases}
Piecewise((x*(-2/(x^2 - x) + 2*log(1 - x)/x^2)/2, |x| < 1), (Sum(n*x^n/(1 + n), (n, 0, oo)), True))

    Examples of finding the sum of a series