Mister Exam

Other calculators


sqrt(n/(2n+2))

Sum of series sqrt(n/(2n+2))



=

The solution

You have entered [src]
  oo               
____               
\   `              
 \        _________
  \      /    n    
  /     /  ------- 
 /    \/   2*n + 2 
/___,              
n = 1              
$$\sum_{n=1}^{\infty} \sqrt{\frac{n}{2 n + 2}}$$
Sum(sqrt(n/(2*n + 2)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\sqrt{\frac{n}{2 n + 2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \sqrt{\frac{n}{2 n + 2}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\sqrt{n} \sqrt{2 n + 4}}{\sqrt{n + 1} \sqrt{2 n + 2}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
  oo             
____             
\   `            
 \         ___   
  \      \/ n    
   )  -----------
  /     _________
 /    \/ 2 + 2*n 
/___,            
n = 1            
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{2 n + 2}}$$
Sum(sqrt(n)/sqrt(2 + 2*n), (n, 1, oo))
The graph
Sum of series sqrt(n/(2n+2))

    Examples of finding the sum of a series