Mister Exam

Other calculators

Sum of series sqrt(a25)



=

The solution

You have entered [src]
  oo         
 ___         
 \  `        
  \     _____
  /   \/ a25 
 /__,        
n = 1        
n=1a25\sum_{n=1}^{\infty} \sqrt{a_{25}}
Sum(sqrt(a25), (n, 1, oo))
The radius of convergence of the power series
Given number:
a25\sqrt{a_{25}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=a25a_{n} = \sqrt{a_{25}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
     _____
oo*\/ a25 
a25\infty \sqrt{a_{25}}
oo*sqrt(a25)

    Examples of finding the sum of a series