Mister Exam

Other calculators

Sum of series sqrt(ln(cos(1/n)))



=

The solution

You have entered [src]
  oo                   
____                   
\   `                  
 \        _____________
  \      /    /   /1\\ 
  /     /  log|cos|-|| 
 /    \/      \   \n// 
/___,                  
n = 1                  
$$\sum_{n=1}^{\infty} \sqrt{\log{\left(\cos{\left(\frac{1}{n} \right)} \right)}}$$
Sum(sqrt(log(cos(1/n))), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\sqrt{\log{\left(\cos{\left(\frac{1}{n} \right)} \right)}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \sqrt{\log{\left(\cos{\left(\frac{1}{n} \right)} \right)}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left|{\sqrt{\log{\left(\cos{\left(\frac{1}{n} \right)} \right)}}}\right|}{\left|{\sqrt{\log{\left(\cos{\left(\frac{1}{n + 1} \right)} \right)}}}\right|}\right)$$
Let's take the limit
we find
True

False

    Examples of finding the sum of a series