Mister Exam

Other calculators


9/(9n^2+3n-20)

Sum of series 9/(9n^2+3n-20)



=

The solution

You have entered [src]
  oo                 
____                 
\   `                
 \           9       
  \   ---------------
  /      2           
 /    9*n  + 3*n - 20
/___,                
n = 1                
$$\sum_{n=1}^{\infty} \frac{9}{\left(9 n^{2} + 3 n\right) - 20}$$
Sum(9/(9*n^2 + 3*n - 20), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{9}{\left(9 n^{2} + 3 n\right) - 20}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{9}{9 n^{2} + 3 n - 20}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(9 \left|{\frac{\frac{n}{3} + \left(n + 1\right)^{2} - \frac{17}{9}}{9 n^{2} + 3 n - 20}}\right|\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
     /        0\                  /         0\            
   9*\-1 - 5*e /*Gamma(11/3)    3*\-9 + 18*e /*Gamma(11/3)
- --------------------------- - --------------------------
     /          0\                /          0\           
  16*\-10 + 10*e /*Gamma(8/3)   8*\-10 + 10*e /*Gamma(8/3)
$$- \frac{3 \left(-9 + 18 e^{0}\right) \Gamma\left(\frac{11}{3}\right)}{8 \left(-10 + 10 e^{0}\right) \Gamma\left(\frac{8}{3}\right)} - \frac{9 \left(- 5 e^{0} - 1\right) \Gamma\left(\frac{11}{3}\right)}{16 \left(-10 + 10 e^{0}\right) \Gamma\left(\frac{8}{3}\right)}$$
-9*(-1 - 5*exp_polar(0))*gamma(11/3)/(16*(-10 + 10*exp_polar(0))*gamma(8/3)) - 3*(-9 + 18*exp_polar(0))*gamma(11/3)/(8*(-10 + 10*exp_polar(0))*gamma(8/3))
Numerical answer [src]
-0.300000000000000000000000000000
-0.300000000000000000000000000000
The graph
Sum of series 9/(9n^2+3n-20)

    Examples of finding the sum of a series