Mister Exam

Other calculators


(6*n-7)/2^n

Sum of series (6*n-7)/2^n



=

The solution

You have entered [src]
  oo         
____         
\   `        
 \    6*n - 7
  \   -------
  /       n  
 /       2   
/___,        
n = 1        
n=16n72n\sum_{n=1}^{\infty} \frac{6 n - 7}{2^{n}}
Sum((6*n - 7)/2^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
6n72n\frac{6 n - 7}{2^{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=6n7a_{n} = 6 n - 7
and
x0=2x_{0} = -2
,
d=1d = -1
,
c=0c = 0
then
1R=~(2+limn6n76n1)\frac{1}{R} = \tilde{\infty} \left(-2 + \lim_{n \to \infty} \left|{\frac{6 n - 7}{6 n - 1}}\right|\right)
Let's take the limit
we find
False

R=0R = 0
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.55-5
The answer [src]
5
55
5
Numerical answer [src]
5.00000000000000000000000000000
5.00000000000000000000000000000
The graph
Sum of series (6*n-7)/2^n

    Examples of finding the sum of a series