Mister Exam

Other calculators


6/(3n-2)*(3n+4)

Sum of series 6/(3n-2)*(3n+4)



=

The solution

You have entered [src]
  oo                   
 ___                   
 \  `                  
  \      6             
   )  -------*(3*n + 4)
  /   3*n - 2          
 /__,                  
n = 1                  
n=163n2(3n+4)\sum_{n=1}^{\infty} \frac{6}{3 n - 2} \left(3 n + 4\right)
Sum((6/(3*n - 2))*(3*n + 4), (n, 1, oo))
The radius of convergence of the power series
Given number:
63n2(3n+4)\frac{6}{3 n - 2} \left(3 n + 4\right)
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=6(3n+4)3n2a_{n} = \frac{6 \left(3 n + 4\right)}{3 n - 2}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((3n+1)(3n+4)13n23n+7)1 = \lim_{n \to \infty}\left(\frac{\left(3 n + 1\right) \left(3 n + 4\right) \left|{\frac{1}{3 n - 2}}\right|}{3 n + 7}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50150
The answer [src]
oo
\infty
oo
Numerical answer
The series diverges
The graph
Sum of series 6/(3n-2)*(3n+4)

    Examples of finding the sum of a series