Given number:
$$\sin^{n}{\left(\frac{\pi}{2^{n}} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \sin^{n}{\left(2^{- n} \pi \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left|{\sin^{n}{\left(2^{- n} \pi \right)}}\right|}{\left|{\sin^{n + 1}{\left(2^{- n - 1} \pi \right)}}\right|}\right)$$
Let's take the limitwe find
False
False