Mister Exam

Other calculators


(73532,6-(2*1-1/2*57)^2)+(1/12*57)
  • How to use it?

  • Sum of series:
  • 1/(n(n+2)) 1/(n(n+2))
  • (2n-1)/2^n (2n-1)/2^n
  • sqrt(n)-2*sqrt(n+1)+sqrt(n+2) sqrt(n)-2*sqrt(n+1)+sqrt(n+2)
  • log((n^2+1)/n^2) log((n^2+1)/n^2)
  • Identical expressions

  • (seventy-three thousand, five hundred and thirty-two , six -(two * one - one / two * fifty-seven)^ two)+(one / twelve * fifty-seven)
  • (73532,6 minus (2 multiply by 1 minus 1 divide by 2 multiply by 57) squared ) plus (1 divide by 12 multiply by 57)
  • (seventy minus three thousand, five hundred and thirty minus two , six minus (two multiply by one minus one divide by two multiply by fifty minus seven) to the power of two) plus (one divide by twelve multiply by fifty minus seven)
  • (73532,6-(2*1-1/2*57)2)+(1/12*57)
  • 73532,6-2*1-1/2*572+1/12*57
  • (73532,6-(2*1-1/2*57)²)+(1/12*57)
  • (73532,6-(2*1-1/2*57) to the power of 2)+(1/12*57)
  • (73532,6-(21-1/257)^2)+(1/1257)
  • (73532,6-(21-1/257)2)+(1/1257)
  • 73532,6-21-1/2572+1/1257
  • 73532,6-21-1/257^2+1/1257
  • (73532,6-(2*1-1 divide by 2*57)^2)+(1 divide by 12*57)
  • Similar expressions

  • (73532,6-(2*1+1/2*57)^2)+(1/12*57)
  • (73532,6-(2*1-1/2*57)^2)-(1/12*57)
  • (73532,6+(2*1-1/2*57)^2)+(1/12*57)

Sum of series (73532,6-(2*1-1/2*57)^2)+(1/12*57)



=

The solution

You have entered [src]
  oo                                
____                                
\   `                               
 \    /                      2     \
  \   |367663   /    57*(-1)\    57|
  /   |------ - |2 + -------|  + --|
 /    \  5      \       2   /    12/
/___,                               
n = 1                               
$$\sum_{n=1}^{\infty} \left(\frac{57}{12} + \left(\frac{367663}{5} - \left(\frac{\left(-1\right) 57}{2} + 2\right)^{2}\right)\right)$$
Sum(367663/5 - (2 + 57*(-1)/2)^2 + 57/12, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{57}{12} + \left(\frac{367663}{5} - \left(\frac{\left(-1\right) 57}{2} + 2\right)^{2}\right)$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{728351}{10}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series (73532,6-(2*1-1/2*57)^2)+(1/12*57)

    Examples of finding the sum of a series