Mister Exam

Other calculators


log((n^2+1)/n^2)
  • How to use it?

  • Sum of series:
  • n^2/3^n n^2/3^n
  • cos(n*x)/(n^2+1)
  • log((n^2+1)/n^2) log((n^2+1)/n^2)
  • (5-((2^n)-1))/(5-(2^n)) (5-((2^n)-1))/(5-(2^n))
  • Identical expressions

  • log((n^ two + one)/n^ two)
  • logarithm of ((n squared plus 1) divide by n squared )
  • logarithm of ((n to the power of two plus one) divide by n to the power of two)
  • log((n2+1)/n2)
  • logn2+1/n2
  • log((n²+1)/n²)
  • log((n to the power of 2+1)/n to the power of 2)
  • logn^2+1/n^2
  • log((n^2+1) divide by n^2)
  • Similar expressions

  • log((n^2-1)/n^2)

Sum of series log((n^2+1)/n^2)



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \       / 2    \
  \      |n  + 1|
   )  log|------|
  /      |   2  |
 /       \  n   /
/___,            
n = 1            
$$\sum_{n=1}^{\infty} \log{\left(\frac{n^{2} + 1}{n^{2}} \right)}$$
Sum(log((n^2 + 1)/n^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\log{\left(\frac{n^{2} + 1}{n^{2}} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \log{\left(\frac{n^{2} + 1}{n^{2}} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\log{\left(\frac{n^{2} + 1}{n^{2}} \right)}}{\log{\left(\frac{\left(n + 1\right)^{2} + 1}{\left(n + 1\right)^{2}} \right)}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer [src]
1.30184639860371267777043366301
1.30184639860371267777043366301
The graph
Sum of series log((n^2+1)/n^2)

    Examples of finding the sum of a series