Mister Exam

Other calculators

Sum of series (1+sinx)/n



=

The solution

You have entered [src]
  oo            
 ___            
 \  `           
  \   1 + sin(x)
   )  ----------
  /       n     
 /__,           
n = 1           
$$\sum_{n=1}^{\infty} \frac{\sin{\left(x \right)} + 1}{n}$$
Sum((1 + sin(x))/n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\sin{\left(x \right)} + 1}{n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\sin{\left(x \right)} + 1}{n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{n + 1}{n}\right)$$
Let's take the limit
we find
True

False
The answer [src]
oo + oo*sin(x)
$$\infty \sin{\left(x \right)} + \infty$$
oo + oo*sin(x)

    Examples of finding the sum of a series