Mister Exam

Other calculators


(1-0.9)^(1/n)
  • How to use it?

  • Sum of series:
  • n^2*x^(n-1)
  • 1/n^1,5 1/n^1,5
  • nx^n!
  • n*i/2^(i+1)
  • Identical expressions

  • (one - zero . nine)^(one /n)
  • (1 minus 0.9) to the power of (1 divide by n)
  • (one minus zero . nine) to the power of (one divide by n)
  • (1-0.9)(1/n)
  • 1-0.91/n
  • 1-0.9^1/n
  • (1-0.9)^(1 divide by n)
  • Similar expressions

  • (1+0.9)^(1/n)

Sum of series (1-0.9)^(1/n)



=

The solution

You have entered [src]
  oo              
 ___              
 \  `             
  \   n __________
  /   \/ 1 - 9/10 
 /__,             
n = 1             
n=1(910+1)1n\sum_{n=1}^{\infty} \left(- \frac{9}{10} + 1\right)^{\frac{1}{n}}
Sum((1 - 9/10)^(1/n), (n, 1, oo))
The radius of convergence of the power series
Given number:
(910+1)1n\left(- \frac{9}{10} + 1\right)^{\frac{1}{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(110)1na_{n} = \left(\frac{1}{10}\right)^{\frac{1}{n}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(101n101n+1)1 = \lim_{n \to \infty}\left(10^{- \frac{1}{n}} 10^{\frac{1}{n + 1}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.505
The answer [src]
  oo       
____       
\   `      
 \      -1 
  \     ---
  /      n 
 /    10   
/___,      
n = 1      
n=1(110)1n\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^{\frac{1}{n}}
Sum((1/10)^(1/n), (n, 1, oo))
Numerical answer
The series diverges
The graph
Sum of series (1-0.9)^(1/n)

    Examples of finding the sum of a series