Mister Exam

Other calculators

Sum of series 1+x+x2+x3+



=

The solution

You have entered [src]
  oo                   
 __                    
 \ `                   
  )   (1 + x + x2 + x3)
 /_,                   
n = 1                  
n=1(x3+(x2+(x+1)))\sum_{n=1}^{\infty} \left(x_{3} + \left(x_{2} + \left(x + 1\right)\right)\right)
Sum(1 + x + x2 + x3, (n, 1, oo))
The radius of convergence of the power series
Given number:
x3+(x2+(x+1))x_{3} + \left(x_{2} + \left(x + 1\right)\right)
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=x+x2+x3+1a_{n} = x + x_{2} + x_{3} + 1
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
oo*(1 + x + x2 + x3)
(x+x2+x3+1)\infty \left(x + x_{2} + x_{3} + 1\right)
oo*(1 + x + x2 + x3)

    Examples of finding the sum of a series