Mister Exam

Other calculators


1/(x*(x+1))

Sum of series 1/(x*(x+1))



=

The solution

You have entered [src]
  oo           
 ___           
 \  `          
  \       1    
   )  ---------
  /   x*(x + 1)
 /__,          
x = 1          
x=11x(x+1)\sum_{x=1}^{\infty} \frac{1}{x \left(x + 1\right)}
Sum(1/(x*(x + 1)), (x, 1, oo))
The radius of convergence of the power series
Given number:
1x(x+1)\frac{1}{x \left(x + 1\right)}
It is a series of species
ax(cxx0)dxa_{x} \left(c x - x_{0}\right)^{d x}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limxaxax+1cR^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}
In this case
ax=1x(x+1)a_{x} = \frac{1}{x \left(x + 1\right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limx(x+2x)1 = \lim_{x \to \infty}\left(\frac{x + 2}{x}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.01.0
The answer [src]
1
11
1
Numerical answer [src]
1.00000000000000000000000000000
1.00000000000000000000000000000
The graph
Sum of series 1/(x*(x+1))

    Examples of finding the sum of a series