Mister Exam

Other calculators

Sum of series 1/(x(x+1))



=

The solution

You have entered [src]
  oo           
 ___           
 \  `          
  \       1    
   )  ---------
  /   x*(x + 1)
 /__,          
k = 1          
k=11x(x+1)\sum_{k=1}^{\infty} \frac{1}{x \left(x + 1\right)}
Sum(1/(x*(x + 1)), (k, 1, oo))
The radius of convergence of the power series
Given number:
1x(x+1)\frac{1}{x \left(x + 1\right)}
It is a series of species
ak(cxx0)dka_{k} \left(c x - x_{0}\right)^{d k}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limkakak+1cR^{d} = \frac{x_{0} + \lim_{k \to \infty} \left|{\frac{a_{k}}{a_{k + 1}}}\right|}{c}
In this case
ak=1x(x+1)a_{k} = \frac{1}{x \left(x + 1\right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limk11 = \lim_{k \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
    oo   
---------
x*(1 + x)
x(x+1)\frac{\infty}{x \left(x + 1\right)}
oo/(x*(1 + x))

    Examples of finding the sum of a series