Mister Exam

Other calculators


1/((2^x)*x!)
  • How to use it?

  • Sum of series:
  • (7^n-2^n)/14^n (7^n-2^n)/14^n
  • 3^(n-1)/8^(n-1) 3^(n-1)/8^(n-1)
  • (n^2)(tg(pi/2)^5) (n^2)(tg(pi/2)^5)
  • 24000 24000
  • Identical expressions

  • one /((two ^x)*x!)
  • 1 divide by ((2 to the power of x) multiply by x!)
  • one divide by ((two to the power of x) multiply by x!)
  • 1/((2x)*x!)
  • 1/2x*x!
  • 1/((2^x)x!)
  • 1/((2x)x!)
  • 1/2xx!
  • 1/2^xx!
  • 1 divide by ((2^x)*x!)

Sum of series 1/((2^x)*x!)



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \      1  
  \   -----
  /    x   
 /    2 *x!
/___,      
x = 1      
$$\sum_{x=1}^{\infty} \frac{1}{2^{x} x!}$$
Sum(1/(2^x*factorial(x)), (x, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{2^{x} x!}$$
It is a series of species
$$a_{x} \left(c x - x_{0}\right)^{d x}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}$$
In this case
$$a_{x} = \frac{1}{x!}$$
and
$$x_{0} = -2$$
,
$$d = -1$$
,
$$c = 0$$
then
$$\frac{1}{R} = \tilde{\infty} \left(-2 + \lim_{x \to \infty} \left|{\frac{\left(x + 1\right)!}{x!}}\right|\right)$$
Let's take the limit
we find
$$\frac{1}{R} = \infty$$
$$R = 0$$
The rate of convergence of the power series
The answer [src]
      1/2
-1 + e   
$$-1 + e^{\frac{1}{2}}$$
-1 + exp(1/2)
Numerical answer [src]
0.648721270700128146848650787814
0.648721270700128146848650787814
The graph
Sum of series 1/((2^x)*x!)

    Examples of finding the sum of a series