Given number:
$$\frac{1}{\left(r + 1\right)^{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 1$$
and
$$x_{0} = - r - 1$$
,
$$d = -1$$
,
$$c = 0$$
then
$$\frac{1}{R} = \tilde{\infty} \left(- r - 1 + \lim_{n \to \infty} 1\right)$$
Let's take the limitwe find
$$\frac{1}{R} = \tilde{\infty} r$$
$$R = 0$$