Mister Exam

Other calculators

Sum of series xi-yi



=

The solution

You have entered [src]
  oo             
 __              
 \ `             
  )   (x*i - y*i)
 /_,             
i = 1            
$$\sum_{i=1}^{\infty} \left(i x - i y\right)$$
Sum(x*i - y*i, (i, 1, oo))
The radius of convergence of the power series
Given number:
$$i x - i y$$
It is a series of species
$$a_{i} \left(c x - x_{0}\right)^{d i}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}$$
In this case
$$a_{i} = i x - i y$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{i \to \infty} \left|{\frac{i x - i y}{x \left(i + 1\right) - y \left(i + 1\right)}}\right|$$
Let's take the limit
we find
True

False
The answer [src]
oo*x - oo*y
$$\infty x - \infty y$$
oo*x - oo*y

    Examples of finding the sum of a series