Mister Exam

Other calculators

Sum of series 1/(1-x^2)



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \      1   
  \   ------
  /        2
 /    1 - x 
/___,       
n = 1       
$$\sum_{n=1}^{\infty} \frac{1}{1 - x^{2}}$$
Sum(1/(1 - x^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{1 - x^{2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{1 - x^{2}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
  oo  
------
     2
1 - x 
$$\frac{\infty}{1 - x^{2}}$$
oo/(1 - x^2)

    Examples of finding the sum of a series