Mister Exam

Other calculators:


1/(1-x^2)

Limit of the function 1/(1-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       1   
 lim ------
x->1+     2
     1 - x 
limx1+11x2\lim_{x \to 1^+} \frac{1}{1 - x^{2}}
Limit(1/(1 - x^2), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-2.0-1.5-1.0-0.52.00.00.51.01.5-100100
One‐sided limits [src]
       1   
 lim ------
x->1+     2
     1 - x 
limx1+11x2\lim_{x \to 1^+} \frac{1}{1 - x^{2}}
-oo
-\infty
= -75.2508250825083
       1   
 lim ------
x->1-     2
     1 - x 
limx111x2\lim_{x \to 1^-} \frac{1}{1 - x^{2}}
oo
\infty
= 75.7508305647841
= 75.7508305647841
Other limits x→0, -oo, +oo, 1
limx111x2=\lim_{x \to 1^-} \frac{1}{1 - x^{2}} = -\infty
More at x→1 from the left
limx1+11x2=\lim_{x \to 1^+} \frac{1}{1 - x^{2}} = -\infty
limx11x2=0\lim_{x \to \infty} \frac{1}{1 - x^{2}} = 0
More at x→oo
limx011x2=1\lim_{x \to 0^-} \frac{1}{1 - x^{2}} = 1
More at x→0 from the left
limx0+11x2=1\lim_{x \to 0^+} \frac{1}{1 - x^{2}} = 1
More at x→0 from the right
limx11x2=0\lim_{x \to -\infty} \frac{1}{1 - x^{2}} = 0
More at x→-oo
Rapid solution [src]
-oo
-\infty
Numerical answer [src]
-75.2508250825083
-75.2508250825083
The graph
Limit of the function 1/(1-x^2)