Mister Exam

Other calculators


1/(n(n+3)(n+6))

Sum of series 1/(n(n+3)(n+6))



=

The solution

You have entered [src]
  oo                   
 ___                   
 \  `                  
  \           1        
   )  -----------------
  /   n*(n + 3)*(n + 6)
 /__,                  
n = 1                  
$$\sum_{n=1}^{\infty} \frac{1}{n \left(n + 3\right) \left(n + 6\right)}$$
Sum(1/((n*(n + 3))*(n + 6)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{n \left(n + 3\right) \left(n + 6\right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n \left(n + 3\right) \left(n + 6\right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left(n + 4\right) \left(n + 7\right)}{n \left(n + 3\right) \left(n + 6\right)}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
            0                  0   
  -10 + 40*e         -40 + 22*e    
---------------- + ----------------
   /          0\      /          0\
20*\-90 + 90*e /   24*\-45 + 45*e /
$$\frac{-40 + 22 e^{0}}{24 \left(-45 + 45 e^{0}\right)} + \frac{-10 + 40 e^{0}}{20 \left(-90 + 90 e^{0}\right)}$$
(-10 + 40*exp_polar(0))/(20*(-90 + 90*exp_polar(0))) + (-40 + 22*exp_polar(0))/(24*(-45 + 45*exp_polar(0)))
Numerical answer [src]
0.0675925925925925925925925925926
0.0675925925925925925925925925926
The graph
Sum of series 1/(n(n+3)(n+6))

    Examples of finding the sum of a series