Mister Exam

Other calculators


1/((n(n+1)(n+2)(n+3)))

Sum of series 1/((n(n+1)(n+2)(n+3)))



=

The solution

You have entered [src]
  oo                           
 ___                           
 \  `                          
  \               1            
   )  -------------------------
  /   n*(n + 1)*(n + 2)*(n + 3)
 /__,                          
n = 1                          
n=11n(n+1)(n+2)(n+3)\sum_{n=1}^{\infty} \frac{1}{n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right)}
Sum(1/(((n*(n + 1))*(n + 2))*(n + 3)), (n, 1, oo))
The radius of convergence of the power series
Given number:
1n(n+1)(n+2)(n+3)\frac{1}{n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1n(n+1)(n+2)(n+3)a_{n} = \frac{1}{n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(n+4n)1 = \lim_{n \to \infty}\left(\frac{n + 4}{n}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.040.06
The answer [src]
1/18
118\frac{1}{18}
1/18
Numerical answer [src]
0.0555555555555555555555555555556
0.0555555555555555555555555555556
The graph
Sum of series 1/((n(n+1)(n+2)(n+3)))

    Examples of finding the sum of a series