Mister Exam

Other calculators


arcsin(1/sqrt(n))

Sum of series arcsin(1/sqrt(n))



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \        /  1  \
  \   asin|-----|
  /       |  ___|
 /        \\/ n /
/___,            
n = 1            
n=1asin(1n)\sum_{n=1}^{\infty} \operatorname{asin}{\left(\frac{1}{\sqrt{n}} \right)}
Sum(asin(1/(sqrt(n))), (n, 1, oo))
The radius of convergence of the power series
Given number:
asin(1n)\operatorname{asin}{\left(\frac{1}{\sqrt{n}} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=asin(1n)a_{n} = \operatorname{asin}{\left(\frac{1}{\sqrt{n}} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limnasin(1n)asin(1n+1)1 = \lim_{n \to \infty} \left|{\frac{\operatorname{asin}{\left(\frac{1}{\sqrt{n}} \right)}}{\operatorname{asin}{\left(\frac{1}{\sqrt{n + 1}} \right)}}}\right|
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.505
The answer [src]
  oo             
____             
\   `            
 \        /  1  \
  \   asin|-----|
  /       |  ___|
 /        \\/ n /
/___,            
n = 1            
n=1asin(1n)\sum_{n=1}^{\infty} \operatorname{asin}{\left(\frac{1}{\sqrt{n}} \right)}
Sum(asin(1/sqrt(n)), (n, 1, oo))
The graph
Sum of series arcsin(1/sqrt(n))

    Examples of finding the sum of a series