Mister Exam

Other calculators


1/(n*(n-2)*(n-3))

Sum of series 1/(n*(n-2)*(n-3))



=

The solution

You have entered [src]
  oo                   
 ___                   
 \  `                  
  \           1        
   )  -----------------
  /   n*(n - 2)*(n - 3)
 /__,                  
n = 1                  
$$\sum_{n=1}^{\infty} \frac{1}{n \left(n - 2\right) \left(n - 3\right)}$$
Sum(1/((n*(n - 2))*(n - 3)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{n \left(n - 2\right) \left(n - 3\right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n \left(n - 3\right) \left(n - 2\right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left|{\frac{n - 1}{n - 3}}\right|}{n}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
  oo                     
 ___                     
 \  `                    
  \            1         
   )  -------------------
  /   n*(-3 + n)*(-2 + n)
 /__,                    
n = 1                    
$$\sum_{n=1}^{\infty} \frac{1}{n \left(n - 3\right) \left(n - 2\right)}$$
Sum(1/(n*(-3 + n)*(-2 + n)), (n, 1, oo))
The graph
Sum of series 1/(n*(n-2)*(n-3))

    Examples of finding the sum of a series