Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 1/((2n-1)(2n+1)) 1/((2n-1)(2n+1))
  • 17 17
  • (-1)^nx^2n+1/(2n+1)!
  • 1/4^x
  • Identical expressions

  • one /(n(log(n))^k)
  • 1 divide by (n( logarithm of (n)) to the power of k)
  • one divide by (n( logarithm of (n)) to the power of k)
  • 1/(n(log(n))k)
  • 1/nlognk
  • 1/nlogn^k
  • 1 divide by (n(log(n))^k)

Sum of series 1/(n(log(n))^k)



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \        1    
  \   ---------
  /        k   
 /    n*log (n)
/___,          
n = 1          
$$\sum_{n=1}^{\infty} \frac{1}{n \log{\left(n \right)}^{k}}$$
Sum(1/(n*log(n)^k), (n, 1, oo))
The answer [src]
  oo          
____          
\   `         
 \       -k   
  \   log  (n)
  /   --------
 /       n    
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{\log{\left(n \right)}^{- k}}{n}$$
Sum(log(n)^(-k)/n, (n, 1, oo))

    Examples of finding the sum of a series