Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • cos(1/n) cos(1/n)
  • sin(n*x)/5^n
  • ln(1+(1/n*sqrt(n)))+1/n ln(1+(1/n*sqrt(n)))+1/n
  • cosnx/n^p
  • Identical expressions

  • sin(n*x)/ five ^n
  • sinus of (n multiply by x) divide by 5 to the power of n
  • sinus of (n multiply by x) divide by five to the power of n
  • sin(n*x)/5n
  • sinn*x/5n
  • sin(nx)/5^n
  • sin(nx)/5n
  • sinnx/5n
  • sinnx/5^n
  • sin(n*x) divide by 5^n

Sum of series sin(n*x)/5^n



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \    sin(n*x)
  \   --------
  /       n   
 /       5    
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{\sin{\left(n x \right)}}{5^{n}}$$
Sum(sin(n*x)/5^n, (n, 1, oo))
The answer [src]
  oo              
 ___              
 \  `             
  \    -n         
  /   5  *sin(n*x)
 /__,             
n = 1             
$$\sum_{n=1}^{\infty} 5^{- n} \sin{\left(n x \right)}$$
Sum(5^(-n)*sin(n*x), (n, 1, oo))

    Examples of finding the sum of a series