Mister Exam

Other calculators


[1/(ln((n+2)^3)(n+2))]
  • How to use it?

  • Sum of series:
  • (n+1)^2/2^(n-1) (n+1)^2/2^(n-1)
  • (-1)^n/n (-1)^n/n
  • (5/6)^n (5/6)^n
  • 28 28
  • Identical expressions

  • [ one /(ln((n+ two)^ three)(n+ two))]
  • [1 divide by (ln((n plus 2) cubed )(n plus 2))]
  • [ one divide by (ln((n plus two) to the power of three)(n plus two))]
  • [1/(ln((n+2)3)(n+2))]
  • [1/lnn+23n+2]
  • [1/(ln((n+2)³)(n+2))]
  • [1/(ln((n+2) to the power of 3)(n+2))]
  • [1/lnn+2^3n+2]
  • [1 divide by (ln((n+2)^3)(n+2))]
  • Similar expressions

  • [1/(ln((n+2)^3)(n-2))]
  • [1/(ln((n-2)^3)(n+2))]

Sum of series [1/(ln((n+2)^3)(n+2))]



=

The solution

You have entered [src]
  oo                       
____                       
\   `                      
 \              1          
  \   ---------------------
  /      /       3\        
 /    log\(n + 2) /*(n + 2)
/___,                      
n = 1                      
$$\sum_{n=1}^{\infty} \frac{1}{\left(n + 2\right) \log{\left(\left(n + 2\right)^{3} \right)}}$$
Sum(1/(log((n + 2)^3)*(n + 2)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\left(n + 2\right) \log{\left(\left(n + 2\right)^{3} \right)}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\left(n + 2\right) \log{\left(\left(n + 2\right)^{3} \right)}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 3\right) \log{\left(\left(n + 3\right)^{3} \right)}}{\left(n + 2\right) \log{\left(\left(n + 2\right)^{3} \right)}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The graph
Sum of series [1/(ln((n+2)^3)(n+2))]

    Examples of finding the sum of a series