Mister Exam

Other calculators


(-1)^n/n
  • How to use it?

  • Sum of series:
  • (n+1)^2/2^(n-1) (n+1)^2/2^(n-1)
  • (-1)^n/n (-1)^n/n
  • (5/6)^n (5/6)^n
  • 28 28
  • Limit of the function:
  • (-1)^n/n (-1)^n/n
  • Identical expressions

  • (- one)^n/n
  • ( minus 1) to the power of n divide by n
  • ( minus one) to the power of n divide by n
  • (-1)n/n
  • -1n/n
  • -1^n/n
  • (-1)^n divide by n
  • Similar expressions

  • (1)^n/n

Sum of series (-1)^n/n



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \        n
  \   (-1) 
  /   -----
 /      n  
/___,      
n = 1      
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n}}{n}$$
Sum((-1)^n/n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(-1\right)^{n}}{n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n}$$
and
$$x_{0} = 1$$
,
$$d = 1$$
,
$$c = 0$$
then
$$R = \tilde{\infty} \left(1 + \lim_{n \to \infty}\left(\frac{n + 1}{n}\right)\right)$$
Let's take the limit
we find
False
The rate of convergence of the power series
The answer [src]
-log(2)
$$- \log{\left(2 \right)}$$
-log(2)
Numerical answer [src]
-0.693147180559945309417232121458
-0.693147180559945309417232121458
The graph
Sum of series (-1)^n/n

    Examples of finding the sum of a series