oo ___ \ ` \ 1 ) ------------- / 8 + (x + 2)*n /__, n = 1
Sum(1/(8 + (x + 2)*n), (n, 1, oo))
True
False
/ / 12 2*x \ / 2 x \ | Gamma|----- + -----|*Gamma|-1 + ----- + -----| 2 | \2 + x 2 + x/ \ 2 + x 2 + x/ im (x) (2 + re(x))*(10 + re(x)) (2 + re(x))*(12 + 2*re(x)) |------------------------------------------------------- for 1 - --------------------- + ------------------------ - -------------------------- < 0 | / 2 x \ / 12 2*x \ 2 2 2 2 2 2 |(10 + x)*Gamma|----- + -----|*Gamma|-1 + ----- + -----| (2 + re(x)) + im (x) (2 + re(x)) + im (x) (2 + re(x)) + im (x) | \2 + x 2 + x/ \ 2 + x 2 + x/ | < oo | ___ | \ ` | \ 1 | ) ------------- otherwise | / 8 + 2*n + n*x | /__, | n = 1 \
Piecewise((gamma(12/(2 + x) + 2*x/(2 + x))*gamma(-1 + 2/(2 + x) + x/(2 + x))/((10 + x)*gamma(2/(2 + x) + x/(2 + x))*gamma(-1 + 12/(2 + x) + 2*x/(2 + x))), 1 - im(x)^2/((2 + re(x))^2 + im(x)^2) + (2 + re(x))*(10 + re(x))/((2 + re(x))^2 + im(x)^2) - (2 + re(x))*(12 + 2*re(x))/((2 + re(x))^2 + im(x)^2) < 0), (Sum(1/(8 + 2*n + n*x), (n, 1, oo)), True))
x^n/n
(x-1)^n
1/2^(n!)
n^2/n!
x^n/n!
k!/(n!*(n+k)!)
csc(n)^2/n^3
1/n^2
1/n^4
1/n^6
1/n
(-1)^n
(-1)^(n + 1)/n
(n + 2)*(-1)^(n - 1)
(3*n - 1)/(-5)^n
(-1)^(n - 1)*n/(6*n - 5)
(-1)^(n + 1)/n*x^n
(3*n - 1)/(-5)^n