Mister Exam

Other calculators

Sum of series 1/(8+(x+2)n)



=

The solution

You have entered [src]
  oo               
 ___               
 \  `              
  \         1      
   )  -------------
  /   8 + (x + 2)*n
 /__,              
n = 1              
$$\sum_{n=1}^{\infty} \frac{1}{n \left(x + 2\right) + 8}$$
Sum(1/(8 + (x + 2)*n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{n \left(x + 2\right) + 8}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n \left(x + 2\right) + 8}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\left(n + 1\right) \left(x + 2\right) + 8}{n \left(x + 2\right) + 8}}\right|$$
Let's take the limit
we find
True

False
The answer [src]
/          /  12     2*x \      /       2       x  \                                                                                               
|     Gamma|----- + -----|*Gamma|-1 + ----- + -----|                        2                                                                      
|          \2 + x   2 + x/      \     2 + x   2 + x/                      im (x)          (2 + re(x))*(10 + re(x))   (2 + re(x))*(12 + 2*re(x))    
|-------------------------------------------------------  for 1 - --------------------- + ------------------------ - -------------------------- < 0
|              /  2       x  \      /       12     2*x \                     2     2                  2     2                     2     2          
|(10 + x)*Gamma|----- + -----|*Gamma|-1 + ----- + -----|          (2 + re(x))  + im (x)    (2 + re(x))  + im (x)       (2 + re(x))  + im (x)       
|              \2 + x   2 + x/      \     2 + x   2 + x/                                                                                           
|                                                                                                                                                  
<                    oo                                                                                                                            
|                   ___                                                                                                                            
|                   \  `                                                                                                                           
|                    \         1                                                                                                                   
|                     )  -------------                                                            otherwise                                        
|                    /   8 + 2*n + n*x                                                                                                             
|                   /__,                                                                                                                           
|                  n = 1                                                                                                                           
\                                                                                                                                                  
$$\begin{cases} \frac{\Gamma\left(\frac{2 x}{x + 2} + \frac{12}{x + 2}\right) \Gamma\left(\frac{x}{x + 2} - 1 + \frac{2}{x + 2}\right)}{\left(x + 10\right) \Gamma\left(\frac{x}{x + 2} + \frac{2}{x + 2}\right) \Gamma\left(\frac{2 x}{x + 2} - 1 + \frac{12}{x + 2}\right)} & \text{for}\: 1 + \frac{\left(\operatorname{re}{\left(x\right)} + 2\right) \left(\operatorname{re}{\left(x\right)} + 10\right)}{\left(\operatorname{re}{\left(x\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(x\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(x\right)} + 2\right) \left(2 \operatorname{re}{\left(x\right)} + 12\right)}{\left(\operatorname{re}{\left(x\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(x\right)}\right)^{2}} - \frac{\left(\operatorname{im}{\left(x\right)}\right)^{2}}{\left(\operatorname{re}{\left(x\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(x\right)}\right)^{2}} < 0 \\\sum_{n=1}^{\infty} \frac{1}{n x + 2 n + 8} & \text{otherwise} \end{cases}$$
Piecewise((gamma(12/(2 + x) + 2*x/(2 + x))*gamma(-1 + 2/(2 + x) + x/(2 + x))/((10 + x)*gamma(2/(2 + x) + x/(2 + x))*gamma(-1 + 12/(2 + x) + 2*x/(2 + x))), 1 - im(x)^2/((2 + re(x))^2 + im(x)^2) + (2 + re(x))*(10 + re(x))/((2 + re(x))^2 + im(x)^2) - (2 + re(x))*(12 + 2*re(x))/((2 + re(x))^2 + im(x)^2) < 0), (Sum(1/(8 + 2*n + n*x), (n, 1, oo)), True))

    Examples of finding the sum of a series