Mister Exam

Other calculators


(-1)^n/(n+1)

Sum of series (-1)^n/(n+1)



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \        n
  \   (-1) 
  /   -----
 /    n + 1
/___,      
n = 1      
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n}}{n + 1}$$
Sum((-1)^n/(n + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(-1\right)^{n}}{n + 1}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n + 1}$$
and
$$x_{0} = 1$$
,
$$d = 1$$
,
$$c = 0$$
then
$$R = \tilde{\infty} \left(1 + \lim_{n \to \infty}\left(\frac{n + 2}{n + 1}\right)\right)$$
Let's take the limit
we find
False
The rate of convergence of the power series
The answer [src]
-1 + log(2)
$$-1 + \log{\left(2 \right)}$$
-1 + log(2)
Numerical answer [src]
-0.306852819440054690582767878542
-0.306852819440054690582767878542
The graph
Sum of series (-1)^n/(n+1)

    Examples of finding the sum of a series