Mister Exam

Other calculators


n^2/e^(sqrt(n))
  • How to use it?

  • Sum of series:
  • n^2*x^(n-1)
  • (2*n-3)/(n^2+2) (2*n-3)/(n^2+2)
  • n^2/e^(sqrt(n)) n^2/e^(sqrt(n))
  • ln((n^3-1)/(n^3+1)) ln((n^3-1)/(n^3+1))
  • Identical expressions

  • n^ two /e^(sqrt(n))
  • n squared divide by e to the power of ( square root of (n))
  • n to the power of two divide by e to the power of ( square root of (n))
  • n^2/e^(√(n))
  • n2/e(sqrt(n))
  • n2/esqrtn
  • n²/e^(sqrt(n))
  • n to the power of 2/e to the power of (sqrt(n))
  • n^2/e^sqrtn
  • n^2 divide by e^(sqrt(n))

Sum of series n^2/e^(sqrt(n))



=

The solution

You have entered [src]
  oo         
_____        
\    `       
 \        2  
  \      n   
   \   ------
   /      ___
  /     \/ n 
 /     E     
/____,       
n = 1        
$$\sum_{n=1}^{\infty} \frac{n^{2}}{e^{\sqrt{n}}}$$
Sum(n^2/E^(sqrt(n)), (n, 1, oo))
The rate of convergence of the power series
The answer [src]
  oo            
 ___            
 \  `           
  \          ___
   )   2  -\/ n 
  /   n *e      
 /__,           
n = 1           
$$\sum_{n=1}^{\infty} n^{2} e^{- \sqrt{n}}$$
Sum(n^2*exp(-sqrt(n)), (n, 1, oo))
Numerical answer [src]
239.994930345328242743435897448
239.994930345328242743435897448
The graph
Sum of series n^2/e^(sqrt(n))

    Examples of finding the sum of a series