Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • (2^n+(-1)^n)/5^n (2^n+(-1)^n)/5^n
  • (n+1)/5^n (n+1)/5^n
  • n^2*sin(5/(3^n)) n^2*sin(5/(3^n))
  • n*2^n n*2^n
  • Identical expressions

  • n/sqrt(arcsin(pi/(n+ one)))
  • n divide by square root of (arc sinus of ( Pi divide by (n plus 1)))
  • n divide by square root of (arc sinus of ( Pi divide by (n plus one)))
  • n/√(arcsin(pi/(n+1)))
  • n/sqrtarcsinpi/n+1
  • n divide by sqrt(arcsin(pi divide by (n+1)))
  • Similar expressions

  • n/sqrt(arcsin(pi/(n-1)))

Sum of series n/sqrt(arcsin(pi/(n+1)))



=

The solution

You have entered [src]
  oo                    
_____                   
\    `                  
 \             n        
  \    -----------------
   \       _____________
   /      /     /  pi \ 
  /      /  asin|-----| 
 /     \/       \n + 1/ 
/____,                  
n = 1                   
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{\operatorname{asin}{\left(\frac{\pi}{n + 1} \right)}}}$$
Sum(n/sqrt(asin(pi/(n + 1))), (n, 1, oo))

    Examples of finding the sum of a series