Mister Exam

Other calculators


9/(9n^2+21n-8)

Sum of series 9/(9n^2+21n-8)



=

The solution

You have entered [src]
  oo                 
____                 
\   `                
 \           9       
  \   ---------------
  /      2           
 /    9*n  + 21*n - 8
/___,                
n = 1                
$$\sum_{n=1}^{\infty} \frac{9}{\left(9 n^{2} + 21 n\right) - 8}$$
Sum(9/(9*n^2 + 21*n - 8), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{9}{\left(9 n^{2} + 21 n\right) - 8}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{9}{9 n^{2} + 21 n - 8}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\left(21 n + 9 \left(n + 1\right)^{2} + 13\right) \left|{\frac{1}{9 n^{2} + 21 n - 8}}\right|\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
   /         0\                   /        0\              
 3*\-18 + 9*e /*Gamma(14/3)     9*\-1 + 4*e /*Gamma(14/3)  
---------------------------- + ----------------------------
   /          0\                  /          0\            
22*\-20 + 20*e /*Gamma(11/3)   44*\-10 + 10*e /*Gamma(11/3)
$$\frac{3 \left(-18 + 9 e^{0}\right) \Gamma\left(\frac{14}{3}\right)}{22 \left(-20 + 20 e^{0}\right) \Gamma\left(\frac{11}{3}\right)} + \frac{9 \left(-1 + 4 e^{0}\right) \Gamma\left(\frac{14}{3}\right)}{44 \left(-10 + 10 e^{0}\right) \Gamma\left(\frac{11}{3}\right)}$$
3*(-18 + 9*exp_polar(0))*gamma(14/3)/(22*(-20 + 20*exp_polar(0))*gamma(11/3)) + 9*(-1 + 4*exp_polar(0))*gamma(14/3)/(44*(-10 + 10*exp_polar(0))*gamma(11/3))
Numerical answer [src]
0.825000000000000000000000000000
0.825000000000000000000000000000
The graph
Sum of series 9/(9n^2+21n-8)

    Examples of finding the sum of a series