Given number:
$$\frac{n \left(a x\right)^{n}}{a} n!$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{n n!}{a}$$
and
$$x_{0} = 0$$
,
$$d = 1$$
,
$$c = a$$
then
$$R = \frac{\lim_{n \to \infty}\left(\frac{n \left|{\frac{n!}{\left(n + 1\right)!}}\right|}{n + 1}\right)}{a}$$
Let's take the limitwe find
$$R = 0$$