Given number:
$$n + \left(- a \frac{144 a^{2}}{12} + \left(a \frac{n^{2}}{12} + n\right)\right)$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = - 12 a^{3} + \frac{a n^{2}}{12} + 2 n$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{- 12 a^{3} + \frac{a n^{2}}{12} + 2 n}{- 12 a^{3} + \frac{a \left(n + 1\right)^{2}}{12} + 2 n + 2}}\right|$$
Let's take the limitwe find
True
False