Mister Exam

Other calculators

Sum of series (-1)^(x+1)/(2x-1)



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \        x + 1
  \   (-1)     
  /   ---------
 /     2*x - 1 
/___,          
n = 1          
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{x + 1}}{2 x - 1}$$
Sum((-1)^(x + 1)/(2*x - 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(-1\right)^{x + 1}}{2 x - 1}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\left(-1\right)^{x + 1}}{2 x - 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
       1 + x
oo*(-1)     
------------
  -1 + 2*x  
$$\frac{\infty \left(-1\right)^{x + 1}}{2 x - 1}$$
oo*(-1)^(1 + x)/(-1 + 2*x)

    Examples of finding the sum of a series