Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 2/n^2 2/n^2
  • x^(4n)/(4n)!
  • 4x
  • cos(xi+yi)
  • Identical expressions

  • x^(4n)/(4n)!
  • x to the power of (4n) divide by (4n)!
  • x(4n)/(4n)!
  • x4n/4n!
  • x^4n/4n!
  • x^(4n) divide by (4n)!

Sum of series x^(4n)/(4n)!



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \      4*n 
  \    x    
  /   ------
 /    (4*n)!
/___,       
n = 0       
$$\sum_{n=0}^{\infty} \frac{x^{4 n}}{\left(4 n\right)!}$$
Sum(x^(4*n)/factorial(4*n), (n, 0, oo))
The radius of convergence of the power series
Given number:
$$\frac{x^{4 n}}{\left(4 n\right)!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\left(4 n\right)!}$$
and
$$x_{0} = 0$$
,
$$d = 4$$
,
$$c = 1$$
then
$$R^{4} = \lim_{n \to \infty} \left|{\frac{\left(4 n + 4\right)!}{\left(4 n\right)!}}\right|$$
Let's take the limit
we find
$$R^{4} = \infty$$
$$R = \infty$$
The answer [src]
  ___   ____   ___ /besseli(-1/2, x)   besselj(-1/2, x)\
\/ 2 *\/ pi *\/ x *|---------------- + ----------------|
                   \       4                  4        /
$$\sqrt{2} \sqrt{\pi} \sqrt{x} \left(\frac{I_{- \frac{1}{2}}\left(x\right)}{4} + \frac{J_{- \frac{1}{2}}\left(x\right)}{4}\right)$$
sqrt(2)*sqrt(pi)*sqrt(x)*(besseli(-1/2, x)/4 + besselj(-1/2, x)/4)

    Examples of finding the sum of a series