Given number:
$$\frac{x^{4 n}}{\left(4 n\right)!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\left(4 n\right)!}$$
and
$$x_{0} = 0$$
,
$$d = 4$$
,
$$c = 1$$
then
$$R^{4} = \lim_{n \to \infty} \left|{\frac{\left(4 n + 4\right)!}{\left(4 n\right)!}}\right|$$
Let's take the limitwe find
$$R^{4} = \infty$$
$$R = \infty$$