Mister Exam

Other calculators


(-1)ln(n+2/n)

Sum of series (-1)ln(n+2/n)



=

The solution

You have entered [src]
  oo             
 ___             
 \  `            
  \       /    2\
   )  -log|n + -|
  /       \    n/
 /__,            
n = 1            
$$\sum_{n=1}^{\infty} - \log{\left(n + \frac{2}{n} \right)}$$
Sum(-log(n + 2/n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$- \log{\left(n + \frac{2}{n} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = - \log{\left(n + \frac{2}{n} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left|{\log{\left(n + \frac{2}{n} \right)}}\right|}{\log{\left(n + 1 + \frac{2}{n + 1} \right)}}\right)$$
Let's take the limit
we find
$$1 = \lim_{n \to \infty}\left(\frac{\left|{\log{\left(n + \frac{2}{n} \right)}}\right|}{\log{\left(n + 1 + \frac{2}{n + 1} \right)}}\right)$$
False
The rate of convergence of the power series
The graph
Sum of series (-1)ln(n+2/n)

    Examples of finding the sum of a series