Mister Exam

Other calculators


(-1)ln(n+2/n)

Sum of series (-1)ln(n+2/n)



=

The solution

You have entered [src]
  oo             
 ___             
 \  `            
  \       /    2\
   )  -log|n + -|
  /       \    n/
 /__,            
n = 1            
n=1log(n+2n)\sum_{n=1}^{\infty} - \log{\left(n + \frac{2}{n} \right)}
Sum(-log(n + 2/n), (n, 1, oo))
The radius of convergence of the power series
Given number:
log(n+2n)- \log{\left(n + \frac{2}{n} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=log(n+2n)a_{n} = - \log{\left(n + \frac{2}{n} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(log(n+2n)log(n+1+2n+1))1 = \lim_{n \to \infty}\left(\frac{\left|{\log{\left(n + \frac{2}{n} \right)}}\right|}{\log{\left(n + 1 + \frac{2}{n + 1} \right)}}\right)
Let's take the limit
we find
1=limn(log(n+2n)log(n+1+2n+1))1 = \lim_{n \to \infty}\left(\frac{\left|{\log{\left(n + \frac{2}{n} \right)}}\right|}{\log{\left(n + 1 + \frac{2}{n + 1} \right)}}\right)
False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50-20
The graph
Sum of series (-1)ln(n+2/n)

    Examples of finding the sum of a series