Mister Exam

Other calculators

Sum of series log(n-i)



=

The solution

You have entered [src]
  oo            
 __             
 \ `            
  )   log(n - i)
 /_,            
i = 1           
$$\sum_{i=1}^{\infty} \log{\left(- i + n \right)}$$
Sum(log(n - i), (i, 1, oo))
The radius of convergence of the power series
Given number:
$$\log{\left(- i + n \right)}$$
It is a series of species
$$a_{i} \left(c x - x_{0}\right)^{d i}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}$$
In this case
$$a_{i} = \log{\left(- i + n \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{i \to \infty} \left|{\frac{\log{\left(- (i - n) \right)}}{\log{\left(- (i - n + 1) \right)}}}\right|$$
Let's take the limit
we find
True

False

    Examples of finding the sum of a series