Mister Exam

Other calculators


ln((n(n+2))/(n+1)^2)

Sum of series ln((n(n+2))/(n+1)^2)



=

The solution

You have entered [src]
  oo                
____                
\   `               
 \       /n*(n + 2)\
  \   log|---------|
  /      |        2|
 /       \ (n + 1) /
/___,               
n = 1               
n=1log(n(n+2)(n+1)2)\sum_{n=1}^{\infty} \log{\left(\frac{n \left(n + 2\right)}{\left(n + 1\right)^{2}} \right)}
Sum(log((n*(n + 2))/(n + 1)^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
log(n(n+2)(n+1)2)\log{\left(\frac{n \left(n + 2\right)}{\left(n + 1\right)^{2}} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=log(n(n+2)(n+1)2)a_{n} = \log{\left(\frac{n \left(n + 2\right)}{\left(n + 1\right)^{2}} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limnlog(n(n+2)(n+1)2)log((n+1)(n+3)(n+2)2)1 = \lim_{n \to \infty} \left|{\frac{\log{\left(\frac{n \left(n + 2\right)}{\left(n + 1\right)^{2}} \right)}}{\log{\left(\frac{\left(n + 1\right) \left(n + 3\right)}{\left(n + 2\right)^{2}} \right)}}}\right|
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5-1.00.0
The answer [src]
  oo                
____                
\   `               
 \       /n*(2 + n)\
  \   log|---------|
  /      |        2|
 /       \ (1 + n) /
/___,               
n = 1               
n=1log(n(n+2)(n+1)2)\sum_{n=1}^{\infty} \log{\left(\frac{n \left(n + 2\right)}{\left(n + 1\right)^{2}} \right)}
Sum(log(n*(2 + n)/(1 + n)^2), (n, 1, oo))
The graph
Sum of series ln((n(n+2))/(n+1)^2)

    Examples of finding the sum of a series